NCERT Solutions for Class 7 Maths Chapter 9 – Perimeter and Area

  NCERT Solutions for Class 7 Maths Chapter 9 – Perimeter and Area

Exercise 9.1

1. Find the area of each of the following parallelograms.

(a)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 2

Solution:-

From the figure,

Height of parallelogram = 4 cm

Base of parallelogram = 7 cm

Then,

Area of parallelogram = Base × Height

= 7 × 4

= 28 cm2

(b)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 3

Solution:-

From the figure,

Height of parallelogram = 3 cm

Base of parallelogram = 5 cm

Then,

Area of parallelogram = Base × Height

= 5 × 3

= 15 cm2

(c)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 4

Solution:-

From the figure,

Height of parallelogram = 3.5 cm

Base of parallelogram = 2.5 cm

Then,

Area of parallelogram = Base × Height

= 2.5 × 3.5

= 8.75 cm2

(d)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 5

Solution:-

From the figure,

Height of parallelogram = 4.8 cm

Base of parallelogram = 5 cm

Then,

Area of parallelogram = Base × Height

= 5 × 4.8

= 24 cm2

(e)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 6

Solution:-

From the figure,

Height of parallelogram = 4.4 cm

Base of parallelogram = 2 cm

Then,

Area of parallelogram = Base × Height

= 2 × 4.4

= 8.8 cm2

2. Find the area of each of the following triangles.

(a)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 7

Solution:-

From the figure,

Base of triangle = 4 cm

Height of height = 3 cm

Then,

Area of triangle = ½ × Base × Height

= ½ × 4 × 3

= 1 × 2 × 3

= 6 cm2

(b)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 8

Solution:-

From the figure,

Base of triangle = 3.2 cm

Height of height = 5 cm

Then,

Area of triangle = ½ × Base × Height

= ½ × 3.2 × 5

= 1 × 1.6 × 5

= 8 cm2

(c)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 9

Solution:-

From the figure,

Base of triangle = 3 cm

Height of height = 4 cm

Then,

Area of triangle = ½ × Base × Height

= ½ × 3 × 4

= 1 × 3 × 2

= 6 cm2

(d)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 10

Solution:-

From the figure,

Base of triangle = 3 cm

Height of height = 2 cm

Then,

Area of triangle = ½ × Base × Height

= ½ × 3 × 2

= 1 × 3 × 1

= 3 cm2

3. Find the missing values.

S.No.BaseHeightArea of the Parallelogram
a.20 cm246 cm2
b.15 cm154.5 cm2
c.8.4 cm48.72 cm2
d.15.6 cm16.38 cm2

Solution:-

(a)

From the table,

Base of parallelogram = 20 cm

Height of parallelogram =?

Area of the parallelogram = 246 cm2

Then,

Area of parallelogram = Base × Height

246 = 20 × height

Height = 246/20

Height = 12.3 cm

∴ Height of the parallelogram is 12.3 cm.

(b)

From the table,

Base of parallelogram =?

Height of parallelogram =15 cm

Area of the parallelogram = 154.5 cm2

Then,

Area of parallelogram = Base × Height

154.5 = base × 15

Base = 154.5/15

Base = 10.3 cm

∴ Base of the parallelogram is 10.3 cm.

(c)

From the table,

Base of parallelogram =?

Height of parallelogram =8.4 cm

Area of the parallelogram = 48.72 cm2

Then,

Area of parallelogram = Base × Height

48.72 = base × 8.4

Base = 48.72/8.4

Base = 5.8 cm

∴ Base of the parallelogram is 5.8 cm.

(d)

From the table,

Base of parallelogram = 15.6 cm

Height of parallelogram =?

Area of the parallelogram = 16.38 cm2

Then,

Area of parallelogram = Base × Height

16.38 = 15.6 × height

Height = 16.38/15.6

Height = 1.05 cm

∴ Height of the parallelogram is 1.05 cm.

S.No.BaseHeightArea of the Parallelogram
a.20 cm12.3 cm246 cm2
b.10.3 cm15 cm154.5 cm2
c.5.8 cm8.4 cm48.72 cm2
d.15.6 cm1.0516.38 cm2

4. Find the missing values.

BaseHeightArea of Triangle
15 cm87 cm2
31.4 mm1256 mm2
22 cm170.5 cm2

Solution:-

(a)

From the table,

Height of triangle =?

Base of triangle = 15 cm

Area of the triangle = 16.38 cm2

Then,

Area of triangle = ½ × Base × Height

87 = ½ × 15 × height

Height = (87 × 2)/15

Height = 174/15

Height = 11.6 cm

∴ Height of the triangle is 11.6 cm.

(b)

From the table,

Height of triangle =31.4 mm

Base of triangle =?

Area of the triangle = 1256 mm2

Then,

Area of triangle = ½ × Base × Height

1256 = ½ × base × 31.4

Base = (1256 × 2)/31.4

Base = 2512/31.4

Base = 80 mm = 8 cm

∴ Base of the triangle is 80 mm or 8 cm.

(c)

From the table,

Height of triangle =?

Base of triangle = 22 cm

Area of the triangle = 170.5 cm2

Then,

Area of triangle = ½ × Base × Height

170.5 = ½ × 22 × height

170.5 = 1 × 11 × height

Height = 170.5/11

Height = 15.5 cm

∴ Height of the triangle is 15.5 cm.

5. PQRS is a parallelogram (Fig 11.23). QM is the height from Q to SR, and QN is the height from Q to PS. If SR = 12 cm and QM = 7.6 cm. Find:

(a) The area of the parallelogram PQRS (b) QN, if PS = 8 cm

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 11

Fig 11.23

Solution:-

From the question, it is given that

SR = 12 cm, QM = 7.6 cm

(a) We know that,

Area of the parallelogram = Base × Height

= SR × QM

= 12 × 7.6

= 91.2 cm2

(b) Area of the parallelogram = Base × Height

91.2 = PS × QN

91.2 = 8 × QN

QN = 91.2/8

QN = 11.4 cm

6. DL and BM are the heights on sides AB and AD, respectively, of parallelogram ABCD (Fig 11.24). If the area of the parallelogram is 1470 cm2, AB = 35 cm and AD = 49 cm, find the length of BM and DL.

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 12

Fig 11.24

Solution:-

From the question, it is given that

Area of the parallelogram = 1470 cm2

AB = 35 cm

AD = 49 cm

Then,

We know that,

Area of the parallelogram = Base × Height

1470 = AB × BM

1470 = 35 × DL

DL = 1470/35

DL = 42 cm

And,

Area of the parallelogram = Base × Height

1470 = AD × BM

1470 = 49 × BM

BM = 1470/49

BM = 30 cm

7. ΔABC is right-angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm, and AC = 12 cm, find the area of ΔABC. Also, find the length of AD.

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 13

Fig 11.25

Solution:-

From the question, it is given that

AB = 5 cm, BC = 13 cm, AC = 12 cm

Then,

We know that,

Area of the ΔABC = ½ × Base × Height

= ½ × AB × AC

= ½ × 5 × 12

= 1 × 5 × 6

= 30 cm2

Now,

Area of ΔABC = ½ × Base × Height

30 = ½ × AD × BC

30 = ½ × AD × 13

(30 × 2)/13 = AD

AD = 60/13

AD = 4.6 cm

8. ΔABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (Fig 11.26). The height AD from A to BC is 6 cm. Find the area of ΔABC. What will be the height from C to AB, i.e., CE?

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 14

Solution:-

From the question, it is given that

AB = AC = 7.5 cm, BC = 9 cm, AD = 6cm

Then,

Area of ΔABC = ½ × Base × Height

= ½ × BC × AD

= ½ × 9 × 6

= 1 × 9 × 3

= 27 cm2

Now,

Area of ΔABC = ½ × Base × Height

27 = ½ × AB × CE

27 = ½ × 7.5 × CE

(27 × 2)/7.5 = CE

CE = 54/7.5

CE = 7.2 cm


Exercise 9.2

1. Find the circumference of the circle with the following radius. (Take π = 22/7)

(a) 14 cm

Solution:-

Given, the radius of the circle = 14 cm

Circumference of the circle = 2πr

= 2 × (22/7) × 14

= 2 × 22 × 2

= 88 cm

(b) 28 mm

Solution:-

Given, the radius of the circle = 28 mm

Circumference of the circle = 2πr

= 2 × (22/7) × 28

= 2 × 22 × 4

= 176 mm

(c) 21 cm

Solution:-

Given, the radius of the circle = 21 cm

Circumference of the circle = 2πr

= 2 × (22/7) × 21

= 2 × 22 × 3

= 132 cm

2. Find the area of the following circles, given that

(a) Radius = 14 mm (Take π = 22/7)

Solution:

Given, the radius of the circle = 14 mm

Then,

Area of the circle = πr2

= 22/7 × 142

= 22/7 × 196

= 22 × 28

= 616 mm2

(b) Diameter = 49 m

Solution:

Given, the diameter of the circle (d) = 49 m

We know that radius (r) = d/2

= 49/2

= 24.5 m

Then,

Area of the circle = πr2

= 22/7 × (24.5)2

= 22/7 × 600.25

= 22 × 85.75

= 1886.5 m2

(c) Radius = 5 cm

Solution:

Given, the radius of the circle = 5 cm

Then,

Area of the circle = πr2

= 22/7 × 52

= 22/7 × 25

= 550/7

= 78.57 cm2

3. If the circumference of a circular sheet is 154 m, find its radius. Also, find the area of the sheet. (Take π = 22/7)

Solution:-

From the question, it is given that

Circumference of the circle = 154 m

Then,

We know that the circumference of the circle = 2πr

154 = 2 × (22/7) × r

154 = 44/7 × r

r = (154 × 7)/44

r = (14 × 7)/4

r = (7 × 7)/2

r = 49/2

r = 24.5 m

Now,

Area of the circle = πr2

= 22/7 × (24.5)2

= 22/7 × 600.25

= 22 × 85.75

= 1886.5 m2

So, the radius of the circle is 24.5, and the area of the circle is 1886.5.

4. A gardener wants to fence a circular garden of diameter 21m. Find the length of the rope he needs to purchase, if he makes 2 rounds of the fence. Also, find the cost of the rope, if it costs ₹ 4 per meter. (Take π = 22/7)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 15

Solution:-

From the question, it is given that

Diameter of the circular garden = 21 m

We know that radius (r) = d/2

= 21/2

= 10.5 m

Then,

Circumference of the circle = 2πr

= 2 × (22/7) × 10.5

= 462/7

= 66 m

So, the length of rope required = 2 × 66 = 132 m

Cost of 1 m rope = ₹ 4 [given]

Cost of 132 m rope = ₹ 4 × 132

= ₹ 528

5. From a circular sheet of radius 4 cm, a circle of radius 3 cm is removed. Find the area of the remaining sheet. (Take π = 3.14)

Solution:-

From the question, it is given that

Radius of circular sheet R = 4 cm

A circle of radius to be removed r = 3 cm

Then,

The area of the remaining sheet = πR– πr2

= π (R2 – r2)

= 3.14 (42 – 32)

= 3.14 (16 – 9)

= 3.14 × 7

= 21.98 cm2

So, the area of the remaining sheet is 21.98 cm2.

6. Saima wants to put lace on the edge of a circular table cover of diameter 1.5 m. Find the length of the lace required, and also, find its cost if one meter of the lace costs ₹ 15. (Take π = 3.14)

Solution:-

From the question, it is given that

Diameter of the circular table = 1.5 m

We know that radius (r) = d/2

= 1.5/2

= 0.75 m

Then,

Circumference of the circle = 2πr

= 2 × 3.14 × 0.75

= 4.71 m

So, the length of the lace = 4.71 m

Cost of 1 m lace = ₹ 15 [given]

Cost of 4.71 m lace = ₹ 15 × 4.71

= ₹ 70.65

7. Find the perimeter of the adjoining figure, which is a semicircle, including its diameter.

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 16

Solution:-

From the question, it is given that

Diameter of semi-circle = 10 cm

We know that radius (r) = d/2

= 10/2

= 5 cm

Then,

Circumference of the semi-circle = πr + 2r

= 3.14(5) + 2(5)

= 5 [3.14+ 2]

= 5 [5.14]

Therefore, the perimeter of the semicircle = 25.7 cm

8. Find the cost of polishing a circular table top of diameter 1.6 m, if the rate of polishing is ₹15/m2. (Take π = 3.14)

Solution:-

From the question, it is given that

Diameter of the circular table-top = 1.6 m

We know that radius (r) = d/2

= 1.6/2

= 0.8 m

Then,

Area of the circular table-top = πr2

= 3.14 × 0.82

= 3.14 × 0.8 ×0.8

= 2.0096 m2

Cost for polishing 1 m2 area = ₹ 15 [given]

Cost for polishing 2.0096 m2 area = ₹ 15 × 2.0096

= ₹ 30.144

Hence, the cost of polishing 2.0096 m2 area is ₹ 30.144.

9. Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also, find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square? (Take π = 22/7)

Solution:-

From the question, it is given that

Length of wire that Shazli took =44 cm

Then,

If the wire is bent into a circle,

We know that the circumference of the circle = 2πr

44 = 2 × (22/7) × r

44 = 44/7 × r

(44 × 7)/44 = r

r = 7 cm

Area of the circle = πr2

= 22/7 × 72

= 22/7 × 7 ×7

= 22 × 7

= 154 cm2

Now,

If the wire is bent into a square,

The length of each side of the square = 44/4

= 11 cm

Area of the square = Length of the side of square2

= 112

= 121 cm2

By comparing the two areas of the square and circle,

Clearly, the circle encloses more area.

10. From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1cm are removed. (As shown in the adjoining figure.) Find the area of the remaining sheet. (Take π = 22/7)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 17

Solution:-

From the question, it is given that

Radius of the circular card sheet = 14 cm

Radius of the two small circles = 3.5 cm

Length of the rectangle = 3 cm

Breadth of the rectangle = 1 cm

First, we have to find out the area of the circular card sheet, two circles and the rectangle to find out the remaining area.

Now,

Area of the circular card sheet = πr2

= 22/7 × 142

= 22/7 × 14 × 14

= 22 × 2 × 14

= 616 cm2

Area of the 2 small circles = 2 × πr2

= 2 × (22/7 × 3.52)

= 2 × (22/7 × 3.5 × 3.5)

= 2 × ((22/7) × 12.25)

= 2 × 38.5

= 77 cm2

Area of the rectangle = Length × Breadth

= 3 × 1

= 3 cm2

Now,

The area of the remaining part = Card sheet area – (Area of two small circles + Rectangle area)

= 616 – (77 + 3)

= 616 – 80

= 536 cm2

11. A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side

6 cm. What is the area of the leftover aluminium sheet? (Take π = 3.14)

Solution:-

From the question, it is given that

Radius of circle = 2 cm

Square sheet side = 6 cm

First, we have to find out the area of the square aluminium sheet and circle to find out the remaining area.

Now,

Area of the square = side2

= 62

= 36 cm2

Area of the circle = πr2

= 3.14 × 22

= 3.14 × 2 × 2

= 3.14 × 4

= 12.56 cm2

Now,

The area of the remaining part = Area of the aluminium square sheet – The area of the circle

= 36 – 12.56

= 23.44 cm2

12. The circumference of a circle is 31.4 cm. Find the radius and the area of the circle. (Take π = 3.14)

Solution:-

From the question, it is given that

Circumference of a circle = 31.4 cm

We know that,

Circumference of a circle = 2πr

31.4 = 2 × 3.14 × r

31.4 = 6.28 × r

31.4/6.28 = r

r = 5 cm

Then,

Area of the circle = πr2

= 3.14 × 52

= 3. 14 × 25

= 78.5 cm

13. A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m. What is the area of this path? (π = 3.14)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 18

Solution:-

From the question, it is given that

Diameter of the flower bed = 66 m

Then,

Radius of the flower bed = d/2

= 66/2

= 33 m

Area of flower bed = πr2

= 3.14 × 332

= 3.14 × 1089

= 3419.46 m

Now, we have to find the area of the flower bed and path together.

So, the radius of the flower bed and path together = 33 + 4 = 37 m

Area of the flower bed and path together = πr2

= 3.14 × 372

= 3.14 × 1369

= 4298.66 m

Finally,

Area of the path = Area of the flower bed and path together – Area of the flower bed

= 4298.66 – 3419.46

= 879.20 m2

14. A circular flower garden has an area of 314 m2. A sprinkler at the centre of the garden can cover an area that has a radius of 12 m. Will the sprinkler water the entire garden? (Take π = 3.14)

Solution:-

From the question, it is given that

Area of the circular flower garden = 314 m2

The sprinkler at the centre of the garden can cover an area that has a radius = 12 m

Area of the circular flower garden = πr2

314 = 3.14 × r2

314/3.14 = r2

r2 = 100

r = √100

r = 10 m

∴ Radius of the circular flower garden is 10 m.

The sprinkler can cover an area of a radius of 12 m.

Hence, the sprinkler will water the whole garden.

15. Find the circumference of the inner and the outer circles, shown in the adjoining figure? (Take π = 3.14)

NCERT Solutions for Class 7 Maths Chapter 11 Perimeter and Area Image 19

Solution:-

From the figure,

Radius of inner circle = outer circle radius – 10

= 19 – 10

= 9 m

Circumference of the inner circle = 2πr

= 2 × 3.14 × 9

= 56.52 m

Then,

Radius of outer circle = 19 m

Circumference of the outer circle = 2πr

= 2 × 3.14 × 19

= 119.32 m

16. How many times a wheel of radius 28 cm must rotate to go 352 m? (Take π = 22/7)

Solution:-

From the question, it is given that

Radius of the wheel = 28 cm

Circumference of the wheel = 2πr

= 2 × 22/7 × 28

= 2 × 22 × 4

= 176 cm

Now, we have to find the number of rotations of the wheel.

= Total distance to be covered/ Circumference of the wheel

= 352 m/176 cm

= 35200 cm/ 176 cm

= 200

17. The minute hand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour? (Take π = 3.14)

Solution:-

From the question, it is given that

Length of the minute hand of the circular clock = 15 cm

Then,

Distance travelled by the tip of minute hand in 1 hour = Circumference of the clock

= 2πr

= 2 × 3.14 × 15

= 94.2 cm



No comments:

Post a Comment