NCERT Class 10 Chapter 11 – Areas Related to Circles
Exercise: 11.1 (Page No: 158)
1. Find the area of a sector of a circle with a radius 6 cm if the angle of the sector is 60°.
Solution:
It is given that the angle of the sector is 60°
We know that the area of sector = (θ/360°)×πr2
∴ area of the sector with angle 60° = (60°/360°)×πr2 cm2
= (36/6)π cm2
= 6×22/7 cm2 = 132/7 cm2
2. Find the area of a quadrant of a circle whose circumference is 22 cm.
Solution:
Circumference of the circle, C = 22 cm (given)
It should be noted that a quadrant of a circle is a sector which is making an angle of 90°.
Let the radius of the circle = r
As C = 2πr = 22,
R = 22/2π cm = 7/2 cm
∴ area of the quadrant = (θ/360°) × πr2
Here, θ = 90°
So, A = (90°/360°) × π r2 cm2
= (49/16) π cm2
= 77/8 cm2 = 9.6 cm2
3. The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.
Solution:
Length of minute hand = radius of the clock (circle)
∴ Radius (r) of the circle = 14 cm (given)
Angle swept by minute hand in 60 minutes = 360°
So, the angle swept by the minute hand in 5 minutes = 360° × 5/60 = 30°
We know,
Area of a sector = (θ/360°) × πr2
Now, the area of the sector making an angle of 30° = (30°/360°) × πr2 cm2
= (1/12) × π142
= (49/3)×(22/7) cm2
= 154/3 cm2
4. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding:
(i) minor segment
(ii) major sector. (Use π = 3.14)
Solution:
Here, AB is the chord which is subtending an angle 90° at the centre O.
It is given that the radius (r) of the circle = 10 cm
(i) Area of minor sector = (90/360°)×πr2
= (¼)×(22/7)×102
Or, the Area of the minor sector = 78.5 cm2
Also, the area of ΔAOB = ½×OB×OA
Here, OB and OA are the radii of the circle, i.e., = 10 cm
So, the area of ΔAOB = ½×10×10
= 50 cm2
Now, area of minor segment = area of the minor sector – the area of ΔAOB
= 78.5 – 50
= 28.5 cm2
(ii) Area of major sector = Area of the circle – Area of he minor sector
= (3.14×102)-78.5
= 235.5 cm2
5. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc
(ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord
Solution:
Given,
Radius = 21 cm
θ = 60°
(i) Length of an arc = θ/360°×Circumference(2πr)
∴ Length of an arc AB = (60°/360°)×2×(22/7)×21
= (1/6)×2×(22/7)×21
Or Arc AB Length = 22cm
(ii) It is given that the angle subtended by the arc = 60°
So, the area of the sector making an angle of 60° = (60°/360°)×π r2 cm2
= 441/6×22/7 cm2
Or, the area of the sector formed by the arc APB is 231 cm2
(iii) Area of segment APB = Area of sector OAPB – Area of ΔOAB
Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is 60°, ΔOAB is an equilateral triangle. So, its area will be √3/4×a2 sq. Units.
The area of segment APB = 231-(√3/4)×(OA)2
= 231-(√3/4)×212
Or, the area of segment APB = [231-(441×√3)/4] cm2
6. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use π = 3.14 and √3 = 1.73)
Solution:
Given,
Radius = 15 cm
θ = 60°
So,
Area of sector OAPB = (60°/360°)×πr2 cm2
= 225/6 πcm2
Now, ΔAOB is equilateral as two sides are the radii of the circle and hence equal and one angle is 60°
So, Area of ΔAOB = (√3/4) ×a2
Or, (√3/4) ×152
∴ Area of ΔAOB = 97.31 cm2
Now, the area of minor segment APB = Area of OAPB – Area of ΔAOB
Or, the area of minor segment APB = ((225/6)π – 97.31) cm2 = 20.43 cm2
And,
Area of major segment = Area of the circle – Area of the segment APB
Or, area of major segment = (π×152) – 20.4 = 686.06 cm2
7. A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and √3 = 1.73)
Solution:
Radius, r = 12 cm
Now, draw a perpendicular OD on chord AB, and it will bisect chord AB.
So, AD = DB
Now, the area of the minor sector = (θ/360°)×πr2
= (120/360)×(22/7)×122
= 150.72 cm2
Consider the ΔAOB,
∠ OAB = 180°-(90°+60°) = 30°
Now, cos 30° = AD/OA
√3/2 = AD/12
Or, AD = 6√3 cm
We know OD bisects AB. So,
AB = 2×AD = 12√3 cm
Now, sin 30° = OD/OA
Or, ½ = OD/12
∴ OD = 6 cm
So, the area of ΔAOB = ½ × base × height
Here, base = AB = 12√3 and
Height = OD = 6
So, area of ΔAOB = ½×12√3×6 = 36√3 cm = 62.28 cm2
∴ area of the corresponding Minor segment = Area of the Minor sector – Area of ΔAOB
= 150.72 cm2– 62.28 cm2 = 88.44 cm2
8. A horse is tied to a peg at one corner of a square-shaped grass field of side 15 m by means of a 5 m long rope (see Fig. 12.11). Find
(i) the area of that part of the field in which the horse can graze.
(ii) the increase in the grazing area if the rope were 10 m long instead of 5 m. (Use π = 3.14)
Solution:
As the horse is tied at one end of a square field, it will graze only a quarter (i.e. sector with θ = 90°) of the field with a radius 5 m.
Here, the length of the rope will be the radius of the circle, i.e. r = 5 m
It is also known that the side of the square field = 15 m
(i) Area of circle = πr2 = 22/7 × 52 = 78.5 m2
Now, the area of the part of the field where the horse can graze = ¼ (the area of the circle) = 78.5/4 = 19.625 m2
(ii) If the rope is increased to 10 m,
Area of circle will be = πr2 =22/7×102 = 314 m2
Now, the area of the part of the field where the horse can graze = ¼ (the area of the circle)
= 314/4 = 78.5 m2
∴ increase in the grazing area = 78.5 m2 – 19.625 m2 = 58.875 m2
9. A brooch is made with silver wire in the form of a circle with a diameter 35 mm. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors, as shown in Fig. 12.12. Find:
(i) the total length of the silver wire required.
(ii) the area of each sector of the brooch.
Solution:
Diameter (D) = 35 mm
Total number of diameters to be considered= 5
Now, the total length of 5 diameters that would be required = 35×5 = 175
Circumference of the circle = 2πr
Or, C = πD = 22/7×35 = 110
Area of the circle = πr2
Or, A = (22/7)×(35/2)2 = 1925/2 mm2
(i) Total length of silver wire required = Circumference of the circle + Length of 5 diameter
= 110+175 = 285 mm
(ii) Total Number of sectors in the brooch = 10
So, the area of each sector = total area of the circle/number of sectors
∴ Area of each sector = (1925/2)×1/10 = 385/4 mm2
10. An umbrella has 8 ribs which are equally spaced (see Fig. 12.13). Assuming the umbrella to be a flat circle of radius 45 cm, find the area between the two consecutive ribs of the umbrella.
Solution:
The radius (r) of the umbrella when flat = 45 cm
So, the area of the circle (A) = πr2 = (22/7)×(45)2 =6364.29 cm2
Total number of ribs (n) = 8
∴ The area between the two consecutive ribs of the umbrella = A/n
6364.29/8 cm2
Or, The area between the two consecutive ribs of the umbrella = 795.5 cm2
11. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades.
Solution:
Given,
Radius (r) = 25 cm
Sector angle (θ) = 115°
Since there are 2 blades,
The total area of the sector made by wiper = 2×(θ/360°)×π r2
= 2×(115/360)×(22/7)×252
= 2×158125/252 cm2
= 158125/126 = 1254.96 cm2
12. To warn ships of underwater rocks, a lighthouse spreads a red-coloured light over a sector of angle 80° to a distance of 16.5 km. Find the area of the sea over which the ships are warned.
(Use π = 3.14)
Solution:
Let O bet the position of the lighthouse.
Here, the radius will be the distance over which light spreads.
Given radius (r) = 16.5 km
Sector angle (θ) = 80°
Now, the total area of the sea over which the ships are warned = Area made by the sector
Or, Area of sector = (θ/360°)×πr2
= (80°/360°)×πr2 km2
= 189.97 km2
13. A round table cover has six equal designs, as shown in Fig. 12.14. If the radius of the cover is 28 cm, find the cost of making the designs at the rate of ₹ 0.35 per cm2. (Use √3 = 1.7)
Solution:
Total number of equal designs = 6
AOB= 360°/6 = 60°
The radius of the cover = 28 cm
Cost of making design = ₹ 0.35 per cm2
Since the two arms of the triangle are the radii of the circle and thus are equal, and one angle is 60°, ΔAOB is an equilateral triangle. So, its area will be (√3/4)×a2 sq. units
Here, a = OA
∴ Area of equilateral ΔAOB = (√3/4)×282 = 333.2 cm2
Area of sector ACB = (60°/360°)×πr2 cm2
= 410.66 cm2
So, the area of a single design = the area of sector ACB – the area of ΔAOB
= 410.66 cm2 – 333.2 cm2 = 77.46 cm2
∴ area of 6 designs = 6×77.46 cm2 = 464.76 cm2
So, total cost of making design = 464.76 cm2 ×Rs.0.35 per cm2
= Rs. 162.66
14. Tick the correct solution in the following:
The area of a sector of angle p (in degrees) of a circle with radius R is
(A) p/180 × 2πR
(B) p/180 × π R2
(C) p/360 × 2πR
(D) p/720 × 2πR2
Solution:
The area of a sector = (θ/360°)×πr2
Given, θ = p
So, the area of sector = p/360×πR2
Multiplying and dividing by 2 simultaneously,
= (p/360)×2/2×πR2
= (2p/720)×2πR2
So, option (D) is correct.
No comments:
Post a Comment