NCERT Class 8 Maths Chapter 8 – Algebraic Expressions and Identities

 

NCERT Class 8 Maths Chapter 8 – Algebraic Expressions and Identities


Exercise 8.1 

1.  Add the following.

(i) ab – bc, bc – ca, ca – ab

(ii) a – b + ab, b – c + bc, c – a + ac

(iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

(iv) l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

Solution:

i) (ab – bc) + (bc – ca) + (ca-ab)

= ab – bc + bc – ca + ca – ab

= ab – ab – bc + bc – ca + ca

= 0

ii) (a – b + ab) + (b – c + bc) + (c – a + ac)

= a – b + ab + b – c + bc + c – a + ac

= a – a +b – b +c – c + ab + bc + ca

= 0 + 0 + 0 + ab + bc + ca

= ab + bc + ca

iii) 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2

= (2p2q2 – 3pq + 4) + (5 + 7pq – 3p2q2)

= 2p2q2 – 3p2q2 – 3pq + 7pq + 4 + 5

= – p2q2 + 4pq + 9

iv)(l2 + m2) + (m2 + n2) + (n2 + l2) + (2lm + 2mn + 2nl)

= l2 + l2 + m2 + m2 + n2 + n2 + 2lm + 2mn + 2nl

= 2l2 + 2m2 + 2n2 + 2lm + 2mn + 2nl

2. (a) Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3

(b) Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz

 (c) Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

Solution:

(a) (12a – 9ab + 5b – 3) – (4a – 7ab + 3b + 12)

= 12a – 9ab + 5b – 3 – 4a + 7ab – 3b – 12

= 12a – 4a -9ab + 7ab +5b – 3b -3 -12

= 8a – 2ab + 2b – 15

b) (5xy – 2yz – 2zx + 10xyz) – (3xy + 5yz – 7zx)

= 5xy – 2yz – 2zx + 10xyz – 3xy – 5yz + 7zx

=5xy – 3xy – 2yz – 5yz – 2zx + 7zx + 10xyz

= 2xy – 7yz + 5zx + 10xyz

c) (18 – 3p – 11q + 5pq – 2pq2 + 5p2q) – (4p2q – 3pq + 5pq2 – 8p + 7q – 10)

= 18 – 3p – 11q + 5pq – 2pq2 + 5p2q – 4p2q + 3pq – 5pq2 + 8p – 7q + 10

=18+10 -3p+8p -11q – 7q + 5 pq+ 3pq- 2pq^2 – 5pq^2 + 5 p^2 q – 4p^2 q

= 28 + 5p – 18q + 8pq – 7pq2 + p2q

 

Exercise 8.2

1. Find the product of the following pairs of monomials.

(i) 4, 7p

(ii) – 4p, 7p

(iii) – 4p, 7pq

(iv)  4p3, – 3p

(v) 4p, 0

Solution:

(i) 4 , 7 p =  4 × 7 × p = 28p

(ii) – 4p × 7p = (-4 × 7 ) × (p × p )= -28p2

(iii) – 4p × 7pq =(-4 × 7 ) (p × pq) =  -28p2q

(iv) 4p3 × – 3p = (4 × -3 ) (p3 × p ) =  -12p4

(v) 4p ×  0 = 0

2. Find the areas of rectangles with the following pairs of monomials as their lengths and breadths, respectively.

(p, q) ; (10m, 5n) ; (20x2 , 5y2) ; (4x, 3x2) ; (3mn, 4np)

Solution:

Area of rectangle = Length x breadth. So, it is multiplication of two monomials.

The results can be written in square units.

(i) p × q = pq

(ii)10m ×  5n = 50mn

(iii) 20x2 ×  5y2 =  100x2y2

(iv) 4x × 3x2 = 12x3

(v) 3mn ×  4np = 12mn2p

3. Complete the following table of products:



Solution:



4. Obtain the volume of rectangular boxes with the following length, breadth and height, respectively.

(i) 5a, 3a2, 7a4

(ii) 2p, 4q, 8r

(iii) xy, 2x2y, 2xy2

(iv) a, 2b, 3c

Solution:

Volume of rectangle = length x  breadth x  height. To evaluate volume of rectangular boxes, multiply all the monomials.

(i) 5a x 3a2 x 7a4 = (5 × 3 × 7) (a × a2 × a4 ) = 105a7

(ii) 2p x 4q x 8r = (2 × 4 × 8 ) (p × q × r ) = 64pqr

(iii) y × 2x2y × 2xy2 =(1 × 2 × 2 )( x × x2 × x × y × y × y2 ) =  4x4y4

(iv) a x  2b x 3c = (1 × 2 × 3 ) (a × b × c) = 6abc

5. Obtain the product of

(i) xy,  yz, zx

(ii) a, – a2 , a3

(iii) 2, 4y, 8y2 , 16y3

(iv) a, 2b, 3c, 6abc

(v) m, – mn, mnp

Solution:

(i) xy × yz × zx = xyz2

(ii) a × – a2  × a= – a6

(iii) 2 × 4y × 8y2 × 16y= 1024 y6

(iv) a × 2b × 3c × 6abc = 36abc2

(v) m × – mn × mnp = –mnp

 

Exercise 8.3 

1. Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r

(ii) ab, a – b

(iii) a + b, 7a²b²

(iv) a– 9, 4a

(v) pq + qr + rp, 0

Solution:

(i)4p(q + r) = 4pq + 4pr

(ii)ab(a – b) = ab – a b2

(iii)(a + b) (7a2b2) = 7a3b2 + 7a2b3

(iv) (a2 – 9)(4a) = 4a3 – 36a

(v) (pq + qr + rp) × 0 = 0 ( Anything multiplied by zero is zero )

2. Complete the table.

ncert solutions for class 8 maths chapter 09 fig 3

Solution:

First expressionSecond expressionProduct
(i)ab + c + da(b+c+d)

= a×b + a×c + a×d

= ab + ac + ad

(ii)x + y – 55xy5 xy (x + y – 5)

= 5 xy x x + 5 xy x y – 5 xy x 5

= 5 x2y + 5 xy– 25xy

(iii)p6p– 7p + 5p (6 p 2-7 p +5)

= p× 6 p– p× 7 p + p×5

= 6 p– 7 p+ 5 p

(iv)4 pq2P– q24p2 q2 * (p2 – q2 )

=4 p4 q2– 4p2 q4

(v)a + b + cabcabc(a + b + c)

= abc × a + abc × b + abc × c

= a2bc + ab2c + abc2

3. Find the product.

i) a2 x (2a22) x (4a26)

ii) (2/3 xy) ×(-9/10 x2y2)

(iii) (-10/3 pq3/) × (6/5 p3q)

(iv) (x) × (x2) × (x3) × (x4)

Solution:

i) a2 x (2a22) x (4a26)

= (2 × 4) ( a2 × a22 × a26 )

= 8 × a2 + 22 + 26 

= 8a50

ii) (2xy/3) ×(-9x2y2/10)

=(2/3 × -9/10 ) ( x × x2 × y × y2 )

= (-3/5 x3y3)

iii) (-10pq3/3) ×(6p3q/5)

= ( -10/3 × 6/5 ) (p × p3× q3 × q)

= (-4p4q4)

iv)  ( x) x (x2) x (x3) x (x4)

= x 1 + 2 + 3 + 4 

=  x10

4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2

(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.

Solution:

a) 3x (4x – 5) + 3

=3x ( 4x) – 3x( 5) +3

=12x2 – 15x + 3

(i) Putting x=3 in the equation we gets 12x2 – 15x + 3 =12(32) – 15 (3) +3

= 108 – 45 + 3

= 66

(ii) Putting x=1/2 in the equation we get

12x2 – 15x + 3 = 12 (1/2)2 – 15 (1/2) + 3

= 12 (1/4) – 15/2 +3

= 3 – 15/2 + 3

= 6- 15/2

= (12- 15 ) /2

= -3/2

b) a(a+a +1)+5

= a x a2 + a x a + a x 1 + 5 =a3+a2+a+ 5

(i) putting a=0 in the equation we get 03+02+0+5=5

(ii) putting a=1 in the equation we get 1+ 1+ 1+5 = 1 + 1 + 1+5 = 8

(iii) Putting a = -1 in the equation we get (-1)3+(-1)+ (-1)+5 = -1 + 1 – 1+5 = 4

5. (a) Add: p ( p – q), q ( q – r) and r ( r – p) 

(b) Add: 2x (z – x – y) and 2y (z – y – x) 

(c) Subtract: 3l (l – 4 m + 5 n) from 4l ( 10 n – 3 m + 2 l ) 

(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c)  from 4c ( – a + b + c )

Solution:

a) p ( p – q) + q ( q – r) + r ( r – p)

= (p2 – pq) + (q2 – qr) + (r2 – pr)

= p2 + q2 + r2 – pq – qr – pr

b) 2x (z – x – y) + 2y (z – y – x)

= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)

= 2xz – 4xy + 2yz – 2x2 – 2y2

c) 4l ( 10 n – 3 m + 2 l ) – 3l (l – 4 m + 5 n)

= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)

= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln

= 25 ln + 5l2

d) 4c ( – a + b + c ) – (3a (a + b + c ) – 2 b (a – b + c))

= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – ( 2ab – 2b2 + 2bc ))

=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)

= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc

= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2

 

Exercise 8.4 

1. Multiply the binomials.

(i) (2x + 5) and (4x – 3)

(ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m)

(iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2) and (3pq – 2q2)

(vi) (3/4 a2 + 3b2) and 4( a2 – 2/3 b2)

Solution :

(i) (2x + 5)(4x – 3)

2x x 4x – 2x x 3 + 5 x 4x – 5 x 3

8x² – 6x + 20x -15

8x² + 14x -15

ii) ( y – 8)(3y – 4)

= y x 3y – 4y – 8 x 3y + 32

= 3y2 – 4y – 24y + 32

= 3y2 – 28y + 32

(iii) (2.5l – 0.5m)(2.5l + 0.5m)

2.5l x 2.5 l + 2.5l x 0.5m – 0.5m x 2.5l – 0.5m x 0.5m

= 6.25l2 + 1.25 lm – 1.25 lm – 0.25 m2

= 6.25l2– 0.25 m2

iv) (a + 3b) (x + 5)

= ax + 5a + 3bx + 15b

v) (2pq + 3q2(3pq – 2q2)

= 2pq x 3pq – 2pq x 2q2 + 3q2 x 3pq – 3q2 x 2q2

= 6p2q2 – 4pq3 + 9pq3 – 6q4

= 6p2q2 + 5pq3 – 6q4

(vi) (3/4 a² + 3b² ) and 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x 4( a² – 2/3 b² )

=(3/4 a² + 3b² ) x (4a² – 8/3 b² )

=3/4 a² x (4a² – 8/3 b² ) + 3b² x (4a² – 8/3 b² )

=3/4 a² x 4a² -3/4 a² x 8/3 b² + 3b² x 4a² – 3b² x 8/3 b²

=3a4 – 2a² b² + 12 a²  b² – 8b4

= 3a4 + 10a²  b² – 8b4

2. Find the product.

(i) (5 – 2x) (3 + x)

(ii) (x + 7y) (7x – y)

(iii) (a2+ b) (a + b2)

(iv) (p– q2) (2p + q)

Solution:

(i) (5 – 2x) (3 + x)

= 5 (3 + x) – 2x (3 + x)

=15 + 5x – 6x – 2x2

= 15 – x -2 x 2

(ii) (x + 7y) (7x – y)

= x(7x-y) + 7y ( 7x-y)

=7x2 – xy + 49xy – 7y2

= 7x2 – 7y2 + 48xy

iii) (a2+ b) (a + b2)

= a2  (a + b2) + b(a + b2)

= a3 + a2b2 + ab + b3

= a3 + b3 + a2b2 + ab

iv) (p2– q2) (2p + q)

= p(2p + q) – q2 (2p + q)

=2p3 + p2q – 2pq2 – q3

= 2p3 – q3 + p2q – 2pq2

3. Simplify.

(i) (x2– 5) (x + 5) + 25

(ii) (a2+ 5) (b3+ 3) + 5

(iii)(t + s2)(t2 – s)

(iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

(v) (x + y)(2x + y) + (x + 2y)(x – y)

(vi) (x + y)(x2– xy + y2)

(vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c)(a + b – c)

Solution:

i) (x2– 5) (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x

ii) (a2+ 5) (b3+ 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

= a2b3 + 5b3 + 3a2 + 20

iii) (t + s2)(t2 – s)

t (t2 – s) + s2(t2 – s)

= t– st + s2t– s3

= t3 – s3 – st + s2t2

iv) (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

= (a + b) (c – d) + (a – b) (c + d) + 2 (ac + bd)

=(ac – ad + bc – bd) + (ac + ad – bc – bd) + (2ac + 2bd)

= ac – ad + bc – bd + ac + ad – bc – bd + 2ac + 2bd

= 4ac

v) (x + y)(2x + y) + (x + 2y)(x – y)

= 2x2 + xy + 2xy + y2 + x2 – xy + 2xy – 2y2

= 3x2 + 4xy – y2

vi) (x + y)(x2– xy + y2)

= x3 – x2y + xy2 + x2y – xy2 + y3

= x3 + y3

vii) (1.5x – 4y)(1.5x + 4y + 3) – 4.5x + 12y

= 2.25x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y = 2.25x2 – 16y2

viii) (a + b + c)(a + b – c)

= a2 + ab – ac + ab + b2 – bc + ac + bc – c2

= a2 + b2 – c2 + 2ab

 

No comments:

Post a Comment